#Multiple features 실제 딥러닝에서는 위와 같이 입력값의 feature가 여러개인 경우를 고려해야 한다. 예측 함수인 Hypothesis함수도 각각의 feature의 개수에 맞춰 세타n까지 있어야 한다. feature가 여러개인 경우 Gradient Descent를 하기 위해선 각각의 세타를 편미분하여 학습률을 곱하여 빼주면 된다.이 때 편미분하여 유도되는 식은 feature가 하나였을 때와 같다. (단 x0=1로 간주한다.) #Feature Scaling Feature Scaling은 매우 중요하다. 각각의 feature값의 범위가 매우 다를 경우 왼쪽 그림처럼 GD의 학습속도가 매우매우 느려질 수 있다.이를 방지하기 위해 각 feature의 max값으로 나눠주어 대략 범위가 0
ML | DL
2018. 9. 5. 10:36
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday